(888) 878-3090
Acrylonitrile Butadiene Rubber (NBR) elastomers are used in Hydrogen delivery systems for Fuel Cell vehicles. The failure of NBR components in high pressure Hydrogen environments is a safety concern. In this case study, Helium Ion Microscopy (HeIM) reveals Hydrogen Induced phase separation of plasticizer in NBR elastomer samples.
Helium-ion microscopy (HeIM) uses a beam of helium ions generated under high voltage, high vacuum and cryogenic temperatures, from an atom-sized ionization source. Interaction of the helium-ion beam with the sample surface produces ion-induced secondary electrons, which are detected and converted to images. HeIM provides sub-nanometer image resolution levels, significantly superior to standard Scanning Electron Microscopy (SEM). HeIM can also provide images with Rutherford backscattered ions (RBIs), using a separate detector. This capability allows HeIM to give information on elemental compositions that a standard SEM cannot. To leverage its high-resolution imaging and surface sensitivity, HeIM has been utilized in surface morphology studies of a wide range of synthetic and natural materials.
Acrylonitrile Butadiene Rubber (NBR) elastomers are used in sealing components of high-pressure hydrogen delivery systems for Fuel Cell Vehicles. The permeation and dissolution of Hydrogen into filled elastomers has been associated with mechanical surface degradation and phenomena such as swelling, blistering and fracture. Eventually catastrophic failure due to rapid gas decompression (RGD) may occur.
In this case study, samples of two NBR compounds labelled N2 and N5, containing plasticizers and/or fillers, were subjected to high pressure Hydrogen at 27.6–90 MPa and elevated temperature. Both the samples N2 and N5 are vulcanized NBR elastomers, with the difference that N5 contains both plasticizer and fillers while N2 does not contain fillers. Each sample is a 22.2 mm disk with a thickness of 2.9 mm. A Zeiss ORION PLUS helium-ion microscope providing resolution less than 0.3 nm, was utilized for imaging and analyses of surfaces and fractures. Images of surface morphology of the N2 sample before and after exposure to 28 MPa Hydrogen gas are presented in Figure 1. The images 1 (a) and (b) show cracks about 1 μm wide, prior to Hydrogen exposure. After saturation in a high-pressure H2 environment for a day, dark spots are visible around the edges of the cracks, as observed from images 1 (c) and (d) The development of spots is indicative of plasticizer agglomeration and Hydrogen induced phase separation.
Reference:
Simmons, K.L., Kuang, W., Burton, S.D., Arey, B.W., Shin, Y., Menon, N.C., and Smith, D.B., H-Mat Hydrogen Compatibility of Polymers and Elastomers, International Journal of Hydrogen Energy, ICHS 2019 Conference, Volume 46, Issue 23, Pages 12300-12310.
hello@infinitalab.com
Δ
Enter Sample and testing requirementsProvide your contact information
Attach file
EELS analysis of gate and channel is performed on fin field-effect transistors (finFETs). Scanning transmission electron…
FTIR analysis is used to study the migration and leaching of phthalate plasticizers from p-PVCs. Phthalate…
Nano-scale surface roughness is a critical parameter in fabricated thin-films that are used in optics, solar…
Start Testing
ASTM E572 test method covers the analysis of stainless and alloy steels by Wavelength Dispersive X-ray Fluorescence Spectrometry (WDXRF). It provides rapid, multi-element determinations with sufficient accuracy to assure product quality.
The ASTM D2674 test is a standard test method for the analysis of sulfochromate etch solutions used in the surface preparation of aluminum. The ASTM D2674 standard specifies a method for determining the efficacy of an etchant used to prepare the surface of aluminum alloys for subsequent adhesive bonding.
An immunological method for quantization of Hevea Natural Rubber (HNRL) proteins using rabbit anti-HNRL serum. Rabbits immunized with HNRL proteins react to the majority of the proteins present, and their sera have the capability to detect most if not all the proteins in HNRL.
ASTM G65 measures the resistance of metallic materials to abrasion using the dry sand/rubber wheel apparatus. The quality, durability, and toughness of the sample are determined using this test. Metallic materials are ranked in their resistance to scratching abrasion under a controlled environment.
ASTM E2141 test methods provide accelerated aging and monitoring of the performance of time-dependent electrochromic devices (ECD) integrated in insulating glass units (IGU). This test helps to understand the relative serviceability of electrochromic glazings applied on ECD.
ASTM C724 test method is used in analyzing the quality and ease of maintenance of a ceramic decoration on architectural-type glass. This test method is useful in the acknowledgment of technical standards.
You share material and testing requirements with us
You ship your sample to us or arrange for us to pick it up.
We deliver the test report to your email.
Let’s work together!
Share your testing requirements with us and we will be happy to assist you.
What Material or product do you have?
What analysis do you need?
How many parts or coupons do you have?
How fast do you need the results back?
Do you know the goal of the analysis you need?
Contact Information
Name
E-mail
Contact number
Query
Submit