ASTM C1359 Test for Tensile Strength of Advanced Ceramics at Elevated Temperatures
ASTM C1359 is used to determine the tensile strength, including stress-strain behavior, under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics (CFCC) at elevated temperatures. The test is used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation for CFCCs. The standard values are reported in SI units.... Read More
Average 30% Cost Savings
100% Confidentiality Guarantee
Free, No-obligation Consultation
100% Customer Satisfaction
TRUSTED BY ENGINEERS FROM
ASTM C1359 Test for Tensile Strength of Advanced Ceramics at Elevated Temperatures
ASTM C1359 is used to determine the tensile strength, including stress-strain behavior, under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics (CFCC) at elevated temperatures. The test is used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation for CFCCs. The standard values are reported in SI units.
Scope:
ASTM C1359 test method is primarily used for advanced ceramic matrix composites with continuous fiber reinforcement, which can be unidirectional (1D), bidirectional (2D), and tridirectional (3D), or other multi-directional reinforcements. It can also be used for glass matrix composites with 1D, 2D, 3D, and other multi-directional continuous fiber reinforcements. Although this test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics. This test method can be equally applicable to these composites.
1) The specimen is mounted: Specimens with different grip interfaces and specimen geometry are mounted differently in the load train.
2) Preparations for Testing: The test mode and test rate are selected on the test machine. The specimen is preloaded to remove the “slack” from the load train, and the amount of preload used is reported. If possible the specimen is heated near-zero loads in the load control test mode.
The extensometer is mounted. Depending on the extensometer, it is mounted on the specimen either at the ambient temperature or at elevated temperatures. At the ambient temperature, it is mounted on the specimen gauge section at zero output. The specimen is enclosed in the furnace and the refractory insulation is lightly packed to seal the specimen and the furnace. The specimen is heated to the test temperature at the prescribed rate until it reaches thermal equilibrium. When the specimen has reached thermal equilibrium, the extensometer is zeroed again.
In ASTM C1359 testing, if the extensometer is to be mounted to a hot specimen, the specimen enclosed in the furnace and refractory insulation is lightly packed to seal the specimen and furnace. The specimen is heated to the test temperature at the prescribed rate and until the specimen has reached the desired temperature. The extensometer is mounted on the specimen gauge section at zero output. When the specimen has reached thermal equilibrium, the extensometer is zeroed again.
3) Conducting the Test: If the test temperature is not being recorded continuously, the test temperature is recorded at test initiation. The data acquisition and the test mode are initiated. After specimen fracture, the test machine and the data collection of the data acquisition system are disabled.
ASTM C1359 testing requires the breaking load to be recorded with an accuracy of 1.0% of the load range. The test temperature at test completion is recorded. The specimen and apparatus are cooled to the ambient temperature. The specimen is removed from the grip interfaces. The specimen along with any fragments from the gauge section is placed into a suitable, non-metallic container for later analysis. The ambient temperature and relative humidity are determined.
Specimen size:
A minimum of five specimens are required in ASTM C1359 testing for estimating the mean. More specimens are used for estimating the form of the strength distribution.
Data:
The following data is calculated in ASTM C1359 testing:
Engineering Stress:
σ=P/A
σ = the engineering stress, P = the applied, uniaxial tensile load. A = the original cross-sectional area, mm2.
2. Engineering Strain:
€ = (I – I0) I0
ε = the engineering strain, I = the extensometer gauge length at any time, and I0 = the original gauge length of the extensometer.
3. Tensile strength:
Su = Pmax /A
Su = the tensile strength Pmax = the maximum load
4. Fracture Strength:
S f =Pbreak/A
Sf= the fracture strength Pbreak = the breaking load when the test specimen separates into two or more pieces.
5. Strain at Fracture Strength:
Strain at fracture strength is determined as the engineering strain corresponding to the fracture strength.
6. Modulus of Elasticity:
Calculate the modulus of elasticity as follows:
E = Δσ/ Δ€
E = modulus of elasticity, and Δσ/ Δ€ = the slope of the σ – € curve within the linear region
Conclusion:
ASTM C1359 is used to determine the tensile strength, including stress-strain behavior, under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics (CFCC) at elevated temperatures.
ASTM E572 test method covers the analysis of stainless and alloy steels by Wavelength Dispersive X-ray Fluorescence Spectrometry (WDXRF). It provides rapid, multi-element determinations with sufficient accuracy to assure product quality.
The ASTM D2674 test is a standard test method for the analysis of sulfochromate etch solutions used in the surface preparation of aluminum. The ASTM D2674 standard specifies a method for determining the efficacy of an etchant used to prepare the surface of aluminum alloys for subsequent adhesive bonding.
An immunological method for quantization of Hevea Natural Rubber (HNRL) proteins using rabbit anti-HNRL serum. Rabbits immunized with HNRL proteins react to the majority of the proteins present, and their sera have the capability to detect most if not all the proteins in HNRL.
ASTM G65 measures the resistance of metallic materials to abrasion using the dry sand/rubber wheel apparatus. The quality, durability, and toughness of the sample are determined using this test. Metallic materials are ranked in their resistance to scratching abrasion under a controlled environment.
ASTM E2141 test methods provide accelerated aging and monitoring of the performance of time-dependent electrochromic devices (ECD) integrated in insulating glass units (IGU). This test helps to understand the relative serviceability of electrochromic glazings applied on ECD.
ASTM C724 test method is used in analyzing the quality and ease of maintenance of a ceramic decoration on architectural-type glass. This test method is useful in the acknowledgment of technical standards.
Send us a request
Process for testing
STEP 01
You share material and testing requirements with us
STEP 02
You ship your sample to us or arrange for us to pick it up.
STEP 03
We deliver the test report to your email.
Just share your testing requirements and leave the rest on us!
Free, no-obligation consultation
Guaranteed confidentiality
Quick turnaround time
Hassle-free process
Let us combine our capabilities to achieve success!!