Instrumental Gas Analysis (IGA) refers to a set of elemental analysis techniques for determining C, H, O, N, and S in metals, ceramics, and inorganic solids. IGA uses combustion or fusion in high-temperature furnaces to convert these elements to gases for detection by NDIR or TCD. The laboratory network of Infinita Lab, USA, offers this test to clients in the USA and other places. ... Read More
Average 30% Cost Savings
100% Confidentiality Guarantee
Free, No-obligation Consultation
100% Customer Satisfaction
TRUSTED BY ENGINEERS FROM
Instrumental Gas Analysis (IGA)
Instrumental Gas Analysis (IGA) refers to a set of analytical techniques for accurately measuring Carbon (C), Sulfur (S), Oxygen (O), Nitrogen (N), and Hydrogen (H) content in a range of solids including metals and alloys, ceramics, metal oxides, metal sulfides, slag, and cement. The samples can be in the form of small blocks, chips, powders, pins, or granules. IGA methods, also termed Elemental Analyzers, convert these elements to gaseous form and detect them by infra-red absorption or thermal conductivity detectors. The techniques used in IGA include combustion analysis for C and S, and Inert Gas Fusion analysis for O, N, and H.
Combustion analysis for C and S determination, using IGA, involves combustion of the solid sample and infrared detection of the combusted products. The solid sample is placed in a ceramic crucible or boat within a furnace, in the presence of an Oxygen gas stream. The high-temperature furnace (~1500 0C) can be a resistance type with precise temperature control or an induction furnace with precise current control to achieve optimum results. Due to the Oxygen-rich environment in the furnace, C and S in the sample are oxidized to form carbon dioxide (CO2) and sulfur dioxide (SO2), respectively. A small amount of carbon monoxide (CO) can also be produced, depending on the concentration of C in the sample. The extracted gases from the furnace are passed through a gas purification system, to a Non-Dispersive Infrared Detector (NDIR) system for quantification.
The Inert Gas Fusion for O, N, and H measurement is performed in an impulse furnace. This involves placing the pre-weighed sample in a graphite crucible that is located between two electrodes. An inert gas (He or Ar) atmosphere is maintained and a high current is passed through the crucible, creating a high temperature that melts the sample and generates gases. The output current of the furnace is monitored and can be automatically optimized to separate surface contamination from bulk content. Elemental Oxygen combines with the Carbon from the Graphite Crucible, to form CO And CO2, which are detected by NDIR cells. The CO, CO2, N2, and H2 then flow through a heated reagent, where CO and H2 are oxidized to CO2 and H2O respectively. The CO2 and H2O are measured by another set of NDIR cells after which they are scrubbed out of the gas stream. The component finally left is Nitrogen which is detected by a Thermal Conductivity Detector (TCD). The O, N, and H concentrations of unknown samples can be determined based on prior calibration with known standard samples.
Video 01: Carbon/Sulfur gas analyzer
Common Uses of Instrumental Gas Analysis (IGA)
Accurate measurement of C, S, O, N, and H for quality and process control in many production facilities of metals, minerals, and other inorganic compounds.
Advantages of Instrumental Gas Analysis (IGA)
Rapid and reliable
Sensitive to even low concentrations of carbon and sulfur
Accurate over a wide range, from ppm to wt%
Limitations of Instrumental Gas Analysis (IGA)
Destructive testing method
Furnace maintenance
Industrial Applications of Instrumental Gas Analysis (IGA)
Metallurgical Processes
Mineral production
Ceramics
Cement
Featured Metrology Testing Services
Select Other Metrology Testing Services From Catalogue
ASTM E572 test method covers the analysis of stainless and alloy steels by Wavelength Dispersive X-ray Fluorescence Spectrometry (WDXRF). It provides rapid, multi-element determinations with sufficient accuracy to assure product quality.
The ASTM D2674 test is a standard test method for the analysis of sulfochromate etch solutions used in the surface preparation of aluminum. The ASTM D2674 standard specifies a method for determining the efficacy of an etchant used to prepare the surface of aluminum alloys for subsequent adhesive bonding.
An immunological method for quantization of Hevea Natural Rubber (HNRL) proteins using rabbit anti-HNRL serum. Rabbits immunized with HNRL proteins react to the majority of the proteins present, and their sera have the capability to detect most if not all the proteins in HNRL.
ASTM G65 measures the resistance of metallic materials to abrasion using the dry sand/rubber wheel apparatus. The quality, durability, and toughness of the sample are determined using this test. Metallic materials are ranked in their resistance to scratching abrasion under a controlled environment.
ASTM E2141 test methods provide accelerated aging and monitoring of the performance of time-dependent electrochromic devices (ECD) integrated in insulating glass units (IGU). This test helps to understand the relative serviceability of electrochromic glazings applied on ECD.
ASTM C724 test method is used in analyzing the quality and ease of maintenance of a ceramic decoration on architectural-type glass. This test method is useful in the acknowledgment of technical standards.
Send us a request
Process for testing
STEP 01
You share material and testing requirements with us
STEP 02
You ship your sample to us or arrange for us to pick it up.
STEP 03
We deliver the test report to your email.
Just share your testing requirements and leave the rest on us!
Free, no-obligation consultation
Guaranteed confidentiality
Quick turnaround time
Hassle-free process
Let us combine our capabilities to achieve success!!