(888) 878-3090
Researchers at the KTH Royal Institute of Technology developed an electrochemical RAM that mimics human synapses. This high-speed ionic Synaptic Memory is made from 2D Titanium Carbide MXene. Various aspects of this material can be evaluated using relevant techniques in metrology testing labs. Electrochemical Random-Access Memory (ECRAM) is a type of non-volatile memory (NVM). Non-volatile memory (NVM) can be leveraged for in-memory compute, thereby reducing the frequency of data transfer between storage and processing units. This can ultimately improve compute time and energy efficiency over hierarchical system architectures by eliminating the Von Neumann bottleneck.
Traditional resistive memories suffer from high write noise and asymmetric conductance tuning, preventing parallel programming of ANN arrays. Electrochemical random-access memories (ECRAMs), where resistive switching occurs by ion insertion into a redox-active channel, aim to address these challenges due to their linear switching and low noise. Metrology testing labs are equipped to test various raw materials as required.
“Instead of transistors that are either on or off, and the need for information to be carried back and forth between the processor and memory—these new computers rely on components that can have multiple states, and perform in-memory computation,” Hamedi says. Metrology testing techniques are very useful for all the evaluations needed.
ECRAMs using 2D materials and metal oxides however suffer from slow ion kinetics, whereas organic ECRAMs enable high-speed operation but face challenges toward very large scale chip integration due to poor temperature stability of polymers. Temperature stability of polymers can be determined in accelerated aging testing labs. Here, ECRAMs uses 2D titanium carbide (Ti3C2Tx). Researchers demonstrated MXene that combines the high speed of organics and the integration compatibility of inorganic materials in a single high-performance device. These ECRAMs combine the speed, linearity, write noise, switching energy, and endurance metrics essential for parallel acceleration of ANNs, and importantly, they are stable after heat treatment needed for back-end-of-line integration with Si electronics.
“MXenes are an exciting materials family for this particular application as they combine the temperature stability needed for integration with conventional electronics with the availability of a vast composition space to optimize performance” says Salleo. Metrology testing labs are equipped to test various raw materials as required. More theoretical work, empirical work, and material testing is needed. Although there is a long way to go before consumers can buy their own neuromorphic computers, the 2D electrochemical RAM is a significant breakthrough towards artificial intelligence that can solve confusing problems with very minimal energy consumption.
Reference:
“High-Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene” by Armantas Melianas, Min-A Kang, Armin VahidMohammadi, Tyler James Quill, Weiqian Tian, Yury Gogotsi, Alberto Salleo and Mahiar Max Hamedi, 21 November 2021, Advanced Functional Materials. DOI: 10.1002/adfm.202109970
Source: https://scitechdaily.com/high-speed-ionic-synaptic-memory-simulating-brain-synapses-in-computers-with-2d-materials/
hello@infinitalab.com
Δ
Enter Sample and testing requirementsProvide your contact information
Attach file
How Spectral Ellipsometry (SE) works: Figure 1: Plarization of a light beam after passing through a polarizer Light waves can...
Perovskite solar cells Like other thin-film technologies, perovskite solar cells have unique properties that make them attractive for reasons beyond...
3D printed OLED Display Researchers successfully 3D printed a flexible OLED display. This could allow anyone to mass-produce low-cost OLED...
EELS analysis of gate and channel is performed on fin field-effect transistors (finFETs). Scanning transmission electron…
FTIR analysis is used to study the migration and leaching of phthalate plasticizers from p-PVCs. Phthalate…
Nano-scale surface roughness is a critical parameter in fabricated thin-films that are used in optics, solar…
Start Testing
ASTM E572 test method covers the analysis of stainless and alloy steels by Wavelength Dispersive X-ray Fluorescence Spectrometry (WDXRF). It provides rapid, multi-element determinations with sufficient accuracy to assure product quality.
The ASTM D2674 test is a standard test method for the analysis of sulfochromate etch solutions used in the surface preparation of aluminum. The ASTM D2674 standard specifies a method for determining the efficacy of an etchant used to prepare the surface of aluminum alloys for subsequent adhesive bonding.
An immunological method for quantization of Hevea Natural Rubber (HNRL) proteins using rabbit anti-HNRL serum. Rabbits immunized with HNRL proteins react to the majority of the proteins present, and their sera have the capability to detect most if not all the proteins in HNRL.
ASTM G65 measures the resistance of metallic materials to abrasion using the dry sand/rubber wheel apparatus. The quality, durability, and toughness of the sample are determined using this test. Metallic materials are ranked in their resistance to scratching abrasion under a controlled environment.
ASTM E2141 test methods provide accelerated aging and monitoring of the performance of time-dependent electrochromic devices (ECD) integrated in insulating glass units (IGU). This test helps to understand the relative serviceability of electrochromic glazings applied on ECD.
ASTM C724 test method is used in analyzing the quality and ease of maintenance of a ceramic decoration on architectural-type glass. This test method is useful in the acknowledgment of technical standards.
You share material and testing requirements with us
You ship your sample to us or arrange for us to pick it up.
We deliver the test report to your email.
Let’s work together!
Share your testing requirements with us and we will be happy to assist you.
What Material or product do you have?
What analysis do you need?
How many parts or coupons do you have?
How fast do you need the results back?
Do you know the goal of the analysis you need?
Contact Information
Name
E-mail
Contact number
Query
Submit